
Journal of Engineering Physics and Thermophysics, Vol. 71, No. 1, 1998 

A M E T H O D  O F  R A P I D  I D E N T I F I C A T I O N  O F  H E A T  

F L U X E S  

O. M. Al i fanov and I. Yu. Gedzhadze  UDC 536.24 

In design, development, and operation of crucml engineering systemssubjected to high heat fluxes, it is often 

necessary to observe the thermal state of the object in real time. The authors suggest an approach that is 

based on the methodology of solution of inverse heat-conduction problems ( IHCP)  and is a special 

adaptation of these methods for solution of observation problems. The approach is based on the idea of the 

possibility of identifying the current thermal state of the object with the use of measurements that are 

chronologically close to the current time, which leads to formulation of the retrospective boundary-value 

IHCP in a local time interval. A solution to this problem is considered, and results and estimates of the 

accuracy of simulation are presented. 

Introduction. The functioning of many modern engineering systems is accompanied by high-intensity heat 

transfer processes that can be caused by interaction with the environment and by operation of power plants. 

Therefore, optimization of heat regimes is an important component of systems subjected to high heat fluxes. The 

most general trends consist in simulation of heat transfer processes in members of the structure subjected to high 

heat fluxes with subsequent choice of their operating characteristics so that their serviceability be ensured with a 

certain safety factor. However, situations are quite possible in which such an approach leads to the choice of 

nonoptimum designs. This can be explained by the complexity of processes considered and, as a result, by 

incomplete adequacy of the mathematical models that are used for their description and by the effect of various 

random factors an account of which is often absolutely impossible. In particular, the matter of optimality becomes 

especially important in development of reusable space systems and long-service apparatus, in which excess of the 

safety factor has an important effect on the final efficiency and cost. Therefore,  in some cases it would be reasonable 

to use intelligent heat systems, i.e., systems in which control by feedback could be implemented, which is fully 

consistent with advanced trends in technology. 

We can give some exampJes of various versions of active thermal-protection systems such as convective, 

film, and porous cooling of structures under high heat fluxes. In these systems, the pumping intensity of the 

heat-transfer agent or the mass flow rate of the coolant can be used as the controlling parameter, and the heat flux 

into the heated wall or its temperature, as the controlled one. Simultaneously, these quantities are observed char- 

acteristics. In most cases direct measurement of heat fluxes or temperatures of heated surfaces is difficult; however, 

one can obtain results by solving the corresponding IHCP on the basis of readings of thermal sensors that are 

mounted inside the wall or on its internal boundary. It is evident that such adaptive systems could allow optimization 

of the power of the coolant pumping systems or the coolant flow rate. 

Thermal experiments and tests are another area where control of heat fluxes based on the servo principle 

or continuous diagnostics of the temperatures of the objects may be required. In the first case, it is necessary to 

reproduce specified time dependences of heat fluxes or temperatures in specimens or models on the basis of 

information obtained from control sensors, while in the second case it is necessary to process experimental data 

immediately in order to determine the time of emergency stop of the tests to avoid damage to expensive equipment. 

To develop thermal systems in which control by feedback is performed, it is necessary first of all to solve 

the problem of observation of the thermal state of the object in real time. (The thermal state is as the temperature 
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distribution over the coordinates and the conditions of heat transfer at the boundaries of the object.) In this case 

use of the methodology of the IHCP brings about important new capabilities. However, two problems are involved 

here. The first is associated with the physical nature of the heat-conduction process and is expressed in delay of 

the response to the unknown action and its substantial damping. On the one hand, this is a physical reason for the 

incorrectness of the IHCP and all resultant mathematical properties. On the other (which is also very important in 

the present case), any estimate of the current thermal state of the object is only an extrapolation. As is shown by 

calculations, the extrapolation error can be admissible high and estimates of reasonable accuracy can be obtained 

only retrospectively. 

The second problem is construction of algorithms that are adapted in a special way to rapid solution of the 

IHCP. In this case it is desirable that the time of solution of the problem be a small part of the interval of the 

forced retrospective shift. The combination of fast algorithms with the capabilities of modern special computers 

based on of the third generation of signal processors inspires hope for a successful solution to this problem. 

Successive algorithms in which a limited sample is used for estimation of the current thermal state of the 

object are the most suitable for solution of the IHCP in real (or close to real) time. In considering the available 

methods, it is necessary first of all to pay attention to the method of construction of the the successive procedure 

and the means of inclusion of the nonlinearity and incorrectness of the problem. The following methods can be 

used here: direct numerical methods based on the finite-difference representation of the heat-conduction equation 

[1-3 ], the method of optimum dynamic filtration [4 ], and methods of successive functional approximation [2 ]. All 

these methods have some drawbacks, among which the most important is that these algorithms are constructed so 

that a subsequent estimate of the thermal state of the object is computed on the basis of the previous one. First, 

this means that it is necessary either to have an estimate of the thermal state of the object at some time, which is 

assumed to be the initial time, or to develop the transient regime and be sure that the estimation process converges. 

In practice, this necessitates, for example, inclusion of algorithms before the start of the thermal process and their 

subsequent continuous operation. Second, with this method of solution, computational errors in the current time 

cross section are transferred to the subsequent ones and it cannot be excluded that under  certain conditions they 

will accumulate. 

In what follows, a method is suggested for construction of successive algori thms that is based on 

consideration of the studied thermal process within a certain local interval that precedes the current time. In this 

case, along with the boundary condition, the initial temperature distribution is also unknown. In this sense, 

according to the classification of [1 ], this formulation of the IHCP can be classified as a retrospective boundary- 

value problem. This formulation is sustainable in the sense that for solution of the problem, no initial information 

about the previous states is required (although if this information is available, it can be used). Successive repetition 

of this procedure with a chosen time step allows recovery of the thermal state of the object in a time segment of 

arbitrary length. Since estimation events in successive local intervals are independent, in principle the length of the 

time shift between them can be any value, in particular, longer than the interval itself, and it is determined by the 

expenditure on estimation in the local interval. In other words, in any case, estimates of the thermal state of the 

object can be obtained, and it is 0nly necessary to determine what the value of the time step is and whether the 

latter is sufficient for subsequent control. 

We consider the inverse problem for the quasilinear heat-conduction equation (the coefficients of the 

equation depend on the temperature). However, in the first part we investigate the solution of the retrospective 

boundary-value IHCP for the linear heat-conduction equation with constant coefficients, for which we obtain a 

regularized inverse operator that depends explicitly on the regularization parameter. In doing this, to choose 

optimum values for the local interval, the retrospective shift, and the step between measurements,  use will be made 

of an approach based on analysis of the accuracy of the solution. In the second part, we consider the solution of 

the IHCP for the quasilinear equation. In essence, we use a regularized variant of the method of successive 

approximations in which in each iteration a linear IHCP that will be considered in detail later is solved. The 

conditions for conversion of this iteration process are analyzed. A method for choosing the regularization parameter 

that would ensure the most rapid convergence and a stopping rule are suggested. Accuracy estimates are presented. 
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Fig. I. Scheme of the time intervals. 

1. Solution of  the Linear  IHCP  We consider  the scheme of the problem shown in Fig. I. Let tc be the cur ren t  

time. An interval that precedes t c and whose length d t is a s sumed  to be short  compared to the total t ime of 

observat ion of the hea t -conduc t ion  process is called an  es t imat ion interval.  At to -- tc - dt, the  t empera tu re  

distribution is assumed unknown and we determine it s imultaneously with the sought  bounda ry  condit ion in the 

interval. Now, we choose a certain point te in the estimation interval, and  the value of the bounda ry  condit ion at  

that t ime is assumed to be the sought point estimate. The  difference de = tc - te is called the t ime de lay  of the 

estimate relative to the current  time. As the current  t ime moves along the time axis, a sequence of point est imates 

is obtained an d  these est imates discretely reconstruct  the sought boundary  condition. 

In the estimation interval, the new time variable r = t - (tc - dr) is in t roduced and  the inverse problem is 

written in dimensionless form: 

T r = Txx,  x E  [0, I ] ,  r E  [0, d t ) ;  T ( x ,  0) = U 0 ( x ) ,  x ~  (0, 1);  

/ z r ( 0 ,  r) + v ; t T  x ( 0 , 3 )  = U 1 ( r ) ,  3 E ( 0 ,  d t ) ;  

a r  x (1, , )  = g* ( 0 ,  e (0, d,) ; 
(1.1) 

T(xk ,  3) + ~ k ( Q  = f ; ( T ) ,  k =  I , N ,  T E ( 0 ,  a t ) .  

where T(x, ~) is the tempera ture ; /z ,  v are parameters  equal to 0 or 1; x/c are the coordinates  of the t empera tu re  

sensors; ~k($) is the measurement  e r ror  of the sensors;  k = 1, N is the number  of the sensor.  It is necessary  to 

determine the functions Uo(x) and U1 (3) using measurements  of ~ (T) ,  k = 1, N, and g*(r). In the opera tor  form 

problem (1.1) has the form AU = f ,  where A is the operator  genera ted  by the hea t -conduct ion  equation,  f is a 

function of measured  quantities,  and  U = {U0(x), Ul(z)}.  

In the case XN -- 1, with some addit ional  assumptions that are not too restrictive from the point of view of 

practice, uniqueness of the solution of inverse problem (1.1) follows from [5 ], where uniqueness of the solution of 

the Cauchy problem was proved for the equation 

a ( z , x )  T z + b (3, x) T x +  c (r, x) T =  Txx (1.2) 

in a rectangular  region with the following limitations on the coefficients of Eq. (1.2): 

0 < a (r, x) -< 1 , [a  r (~-, x) l < 1 , 0 < c (r,  x) _< 1 , I b ('t-, x) I -< 1 , 

Ib ( ,x)l < 1. (1.3) 

In this case with a slight modification of the technique of the proof, it is possible to ex tend  the results to the case 

Ic(3, x) l < 1. 

It is also known that inverse problem (1.1) in ill-posed as regards violation of the stabili ty condit ion.  

Because of this, special regularizing algorithms are needed to solve it [6 ]. In [1 ] it is shown that the assumption 

that the sought  function belongs to the Sobolev space W2 2 is efficacious in solving the IHCP.  We make this 
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assumption, and using A. N. Tikhonov's  regularization method, we determine the solution of the I H C P  considered 

from the condition of a minimum for the stabilizing functional 

d a =  I I A U - f [ 1 2 2 + a  (11 U0 (x)]l 2 2 +  11 U, (Q1122) , a _ > o .  (1.4) 

We approximate the sought relations over some systems of the basis functions {~o/(x)}~ 1, {~oj(v}}] z2 in the form 

nl 
Uo (x) = (x) ,  e (o, t ) ,  (1.5) 

]=1 

n2 
U 1 (z') = X ~] ~] (z'), "t- E (0, d t ) ,  (1.6) 

2=1 

divide the estimation interval into m -  1 equal parts, and take m discrete readings of the observed functions,  which 

will result in a finite-dimensional formulation of problem (1.1). With account for (1.5) and  (1.6), the initial operator  

equation can be writ ten in the form 

A~ - 2 = 0 ,  (1.7) 

where ~ = ~ ,  ~]T; z i x k  = ~ ( z i )  - T ( x k ,  vi, g* ( r ) ) ,  i = I, m ,  k = 1, N ,  and functional (1.4) can be writ ten as 

Ja = I[ A1/~ + AZY - ~ II R mN + ~ II FI /~  II 2hI + II F2y  II 2nnz = 

z 2 (1.8) 
= IIZ - ll R mN+ llF ll R 

Here F is a block-diagonal matrix whose elements FI and F2 are determined from the relations 

FTIFI = ~1 , where ~ l  (i, J) = (~°i ( x )  , ~oj ( X ) ) w 2  , i = 1, nl  , j = 1, n l  , 

F ~ 2 F 2 = ~ 2 ,  where ~ 2 ( i ,  1) = (~oi(Q, ~oj(Q)w2, i =  1, n2 ,  j =  1, n 2 ,  

T ( x k ,  ~i,g*(T)) is the solution of system (1.1) under  the condition Uo(x)  = 0, UI (r) = 0. 
If .4 = A F  - l  and .4 = U S V  T is the result of singular expansion of .4, then following [7 ], the solution of the 

least-squares problem that minimizes functional (1.8) can be written in the form 

A 

-fi = B (a )  -z = F -  1 VSaUT-~ = F -  1 VSa~  1 . (1.9) 

Here gl is the first n elements of the vector ~, - UT2, Sa is a diagonal matrix whose elements are  equal to 

Sai = S i / ( S  2 + Ct) , (1.10) 

where si are singular numbers  of the matrix _4. Factorization of .4 is carried out preliminarily, and therefore  solution 
of the problem is reduced to a sequence of multiplications of matrices by the vector 3. On the order  of (raN) 2 
+ Ion + n 2 operations are required to obtain an estimate. H e r e / o  is the number  of i terations in the search for the 

optimum value of the parameter  a .  Substitution of the estimate of ~ into (1.5) and (1.6) gives the sought  boundary  

condition at any time in the interval dr. 
An important matter  is the choice of the optimum regularization parameter  a.  With account for (1.7) and 

(1.9), the estimation error is specified by the expression 

(a) = p - p =  ( B ( a )  A -  / ) f i +  B ( a )  5 ,  (1.11) 

28 



. t , / 3  
u=  f ~  

Fig. 2. Block diagram of the estimation system. 

and  the accuracy of the regularized solution is specified by the trace of the quadrat ic  form A 2 = sp(M [-g(a)e--T(a) ]). 

Let ~(a)  = (I  - AB(a) )7*  -- E(a)-]* be the residual of problem (1.7) and M[-d(a)~T(a) ] = Ve be the covariance 

matr ix  of the residual.  It is assumed that  the measurement  error  is a s teady-s ta te  random process with a zero 

mathematical  expectat ion and a spesified covariance matr ix  M [(  (T  ] = V~.It is shown in [8 ] that  the solution that  

is opt imum in the sense of the minimum of A2L occurs in the case where lie = Ve = V~E r. Here  the le f t -hand side 

is the estimate of the covariance matrix of the residual that is obtained from the finite-volume sample. There fore ,  

we can speak only about  adoption of the appropriate statistical hypothesis  W0, which can be checked with the 

statistic 

r w (a) = ~ T (Ct) ( V ~ e  T (a))  -1 e ( a ) ,  M [r w (a) ] = raN ,  (1.12) 

If it is assumed that the matr ix  V~ is diagonal and all its elements are equal to a z (i.e., the case of white noise is 

considered) ,  statistic (1.12) can be evaluated from the formula 

I - r  (1.13) r w ( a )  = - - ~ g  ( I - -  SSa) g .  
17 

Therefore ,  the above formula has a X 2 distribution with m N  degrees of freedom. Therefore ,  the hypothesis  W0 can 

be considered true if the value of statistic (1.12) belongs to the confidence interval 

2 2 (1.14) 
O m N  0 p) = [Xy/2 (m/V) , • l - y / 2  (mar) l ,  

2 . where  Zr/2  is the quantile of the distribution Z 2 of the level y / 2 .  Values of the regularizat ion parameter  that  specify 

the confidence region Eo  of variation of the parameter  a correspond to boundaries  of interval (1.14). For  small m 

the confidence interval can be ra lher  long. 

The  residual principle [9] is widely used for solution of ill-posed problems. Let f/¢ = T(x/c, ri). Then ,  if 

II 7 -  7* IIR  -- IIR -< 6 and 117 IIRm N >-- 6, then the root of the residual equation 

II Z p ( a * )  -- -z II 2R. V ---- 6 2 . 0 . 1 5 )  

should be taken as the optimum value a*. No other  assumptions relative to the measurement  e r ror  ~ are  made,  

besides the assumption of f initeness of its norm. If it is assumed that  this is white noise of intensi ty  a, then to 

satisfy the condition of finiteness of the norm with a spesified probabil i ty of er ror  of the first kind, we should take 

62 2 2 (1.16) = )~l - -y /2  ( m N )  o . 

Use of (1.16) gives an est imate of the upper limit of the regularization parameter  whose application leads to 

substantial ly smoothed results in most cases, which is especially pronounced for small m. It can be shown that  

~T(a)~(a)  is always smaller than rw(a)cr 2, and in the choice of the regularization parameter  according to (1.15), 

the statistic rw(a) is always beyond the right boundary  of the confidence interval. This means that  such est imates 

are statistically inconsistent.  

In order  to choose a value of the parameter  a within the confidence interval, we express our  problem in 

the form of the linear system shown in Fig. 2. We consider l inear operators e(a)  = Hi  (a )u  and  e(a)  = H2(a)~  that  

relate the output e to the inputs u and ~. If a unit signal is input to the inputs, for the delay de chosen,  we obtain 
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a = 0.0002; 2) 0.002; 3) 0.02; 4) 0.2. 

the discrete pulse characterist ics hta)(t) and h~a)(t) and,  then, the t ransfer  functions H~a)(w) and/-/~a)(aO (see, for 

example,  Fig. 3). In this figure the abscissa is fractions of the f requency of the readings on a logarithmic scale, 

i.e., the true f requency in Hz is normalized on the frequency of readings co 0 = m/dt  by division. It is a s sumed  that  

the spectral densi ty  of the input signal u is the same and  is nonzero only in the interval [0, 1) Hz (in dimensionless  

t ime),  and  the spectral  densi ty  of noise is the same at all frequencies. With account for  this, the  amplif icat ion 

coefficients are calculated as 

1/~o 0 0 .5  

0 0 

In this case we can write the expression for the relative error  

:z 2 _2  (1 17) = + K2 ( a )  kl  o , 

where kl  is a coefficient that  allows for the t ime-average relation between the sought boundary  condi t ion and  the 

maximum measured  temperature ,  and ~" is a coefficient that specifies the measurement  e r ror  in percent  of the 

temperature.  For example,  we assume kl --- 0.5 and ~'= 5%.  

Functions ~(a) for different  delays are given in Fig. 4 (the heat  flux is being es t imated) .  It can be seen 

that ~'(a) has a region of minimum values, and for some de, there  is a region of variation of a for which the relative 

error  is almost the same. We specify a permissible level of the estimation error  ema x and  isolate the region of 

variation of a for which E'< ema x. This  region is refer red  to as the guaranteed-es t imat ion  interval  and  deno ted  by 

Ee. The  average value of ~(a) in the interval E,  and the magnitude of E~ can be optimality cri ter ia  in the choice of 

the estimation interval dr, the delay de, and the number  of readings m. Thus ,  the following rule can be formula ted  

for the choice of the regularization parameter  a: 

v a  ~ -~ = z o n "= , .  (1.18) 

When (1.18) is used, a statistically consistent solution is obtained that has sat isfactory accuracy.  If E is an empty  

set, it is impossible to solve the problem in a particular time step with the available information.  

From results of numerical  experiments  we have d t ~ [0 .25 ,  0 .4  ] for the value of the est imation interval. 

The  delay depends on the noise level of the measurements  and the frequencies of the input action; however,  with 

the assumpt ions  for which the re la t ive -e r ro r  funct ion shown in Fig. 4 was calcula ted,  we may  r e c o m m e n d  

de > 0.12 in recovery of the tempera ture  and de > 0.18 in recovery of the heat  flux; the n u mb e r  of readings  in the 

estimation interval m ~-= 64. 

2. Solution of the Nonl inear  IHCP. In the case where the thermophysical  coefficients depend  on the 

temperature ,  for an infinite plate of thickness b, the formulation of the IHCP has the form 

C(T) T , - ( ~ ( T ) T x )  x = O ,  x ~  [0, b l ,  ~ I0, d t ) ;  (2.1) 

30 



0.25 

0.20 i 

0.15 

0.10 

005 

t t 

0 0.001 O.OOa 0.020 O.ll cg 

F ig .  4. R e l a t i v e  e s t i m a t i o n  e r r o r  ( N  = 1, x l  = 1.0,  d t = 0 .32 ,  m = 6 4 ) ;  1) de = 

0.09; 2) 0.12; 3) 0.15; 4) 0.18; 5) 0.21. 

r (0, x) = Uo ( x ) ,  x ~ (0, b) ; (2.2) 

F T ( r , O )  + v 2 ( T ( r , O ) ) T  x ( r ,O)  = U 1 ( r ) ,  r E ( O ,  dt);  (2.3) 

- 2t (T  (r, b)) T x (r, b) =g*(r),  rE(0 ,  d O; (2.4) 

T ( r ,  Xk) +~jk(r) = f ; ( Q ,  k = I , N ,  r E (0, a t ) ,  (2.5) 

where A(T) and C(T) are the thermal conductivity and the heat capacity, respectively. The boundary and initial 

conditions should be mutually consistent: 

/zU 0 (0) + va (U 0 (0)) Vox (0) = U I (0) ,  - a (U o (b)) Vox (b) = g* (0) .  (2.6) 

In solving of IHCP (2.1)-(2.5), as before, it is necessary to determine the functions Uo(x) and U103 using 
measurements, according to (2.5). 

We transform Eq. (2.1). Kirchhoff's substitution 

T 
= p ( r )  = f ~t ( r )  a v ,  

o 

results in transformation of initial equation (2.1) to the form 

C ( 7") r~ = 7rxx, (2.7) 

where C(T) = C(P - I  ( ~ / 2 ( P  -1 (T)), and then we use the linear transformation R(T)  = 1 + fiT", where/3 is a factor 
chosen from the condition of the best approximation of the function C(T) by the function R(T) .  The equation in 
R also has the form of (2.7). It can easily be shown that after some simple transformations, the equation can be 

written as 

R~ - pR , ,  x = - ( t , c  (R)  - l )  R , .  (2 .8 )  

We add the transformed initial and boundary conditions: 

R (0, x) = 1 + /3P ( u  0 (x)) = 3 o ( x ) ,  (2.9) 

R (T, 0) = l + /3p  (u~ ( 0 )  - u l  ( 0 ,  (2.10) 

- / ¢ x  (~, b) = g* ( 0 ,  ( 2 . 1 1 )  
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and the equation of observation 

-% ( 0  = R (r, xD + ¢k ( 0 ,  
(2.12) 

where R(r ,  xk) = 1 + f l P ( T ( z ,  x k ) ) ,  ~k(r )  =fl,~(T(r, x k ) ) ~ k ( r )  = f l~ (~k ( r )~k ( r ) .  

In the case where one of the temperature sensors is located on the surface x = b, uniqueness of the solution 

of inverse problem (2.8)-(2.12) can be proved from results obtained in [5 ]. It is assumed that  two solutions R1 and  

R 2 exist that  satisfy Cauchy conditions on the surface x = b. Then,  the difference in these solutions AR satisfies 

an equation of the form 

where 

"ff O, x) AR~ + ~ (~, x) AR = ARxx, 

a'('~, X) = C (R 1 (T', X)) " ~ (~ ,  X) -- OC (R~) (~, x )  OR2 (7;, x)  
' OR Or 

Here Re is a certain solution chosen in accordance with the theorem of the mean. The time variable can always be 

scaled so that the coefficients if(r, x) and U(r, x) satisfy specified limitations on the absolute values. If in this case 

life(r, x) I < 1, the solution to problem (2.8)-(2.12) is unique. 

It is proved t h a t  to solve direct problem (2.8)-(2.11) we can use the iteration process 

Rl+ 1 nl+ 1 ~ l 
• - p ~ x x  = - ( p C ( R  ~ ) - I ) R , ,  

_l+ 1 (r, b) •* (v) Rl+l (0, x) = Vo (x ) ,  R l+l (~, 0) = Vl ( 0 ,  ~x  = , 

which converges for any  initial approximation if 0 < p < 2/C1 is chosen. In this case the c o n v e r g e n c e  rate is 

determined by the quanti ty max(I 1 - pCol ,  I l - PC1 I). Here Co and  C1 are the upper and lower limits of the 

range of the coefficient C, respectively. Hence it follows that if some estimate of the temperature field R0(r,  x) is 

known, a value of p can be selected for which the linear equation 

o (2.13) R~ - pR~x = - (pC (R °) - l) R ,  

roughly approximates initial nonlinear  equation (2.8) in the sense that  the solution of (2.13) with boundary  

conditions (2.9)- (2.11) is closer to the solution of problem (2.8)- (2.11) than R °. 

The following independent  variables are introduced: - =  w w / ( p b  2) and -x = x / b .  Subsequently,  the old notation 

w and x will be used, implying ~ and  5. To solve the nonlinear IHCP the following iteration process is used: 

1. The inverse problem 

R r = R x x ,  

R (0, x) _= l+l ~[+1 (2.14) = v 0 (x ) ,  n ( ~ , 0 )  = ( 0 ,  

• l ('r, Xk) k = 1 N r C (O, d t ) .  R x(w, 1) = g *  (w) ,  R ( W ,  Xk) = R k ( w ) -  R 1 , , , 

The functions U/o+l(x) and ~ + l ( r )  are unknown. They should be found from the observations R~(r). 

2. The direct problem (nonlinear): 

_1+ 1 (2.15) /+1 /+l (pC (R l+1) 1) /'Or R~ -- R x x  = - -- , 

- - / + 1  , Rl+l  -- ~1l+1 _l+1 (r, 1) g'* . R l+1 (O,x) = v o (x) (r, O) ( 0 ,  ~x = ( 0  
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3. The direct problem (linear) 

1+! (2.16) _l+I _t+l t+l)-l)R  
l¢~lr  - -  l ~ l x  x = 

RI+I (0, x) 0 ,  _l+l (r, 0) 0 ,  _1+1 
1 = 1~ 1 = R I x  = O .  

Here r ~ (0, dr), R?(r, x) = 0. 
The following operators are introduced: the linear operator A: Rt0(r, ~) = AU t, which operates according to 

(2.14), and the nonlinear operator AI: R~ (r, x) = A 1 (~J/), which operates according to (2.15) and (2.16). Then, in 

operator form iteration process (2.14)-(2.16) can be written as 

A D  = R* - At (Dr). (2.17) 

Process (2.17) is a method of successive approximations in which the linear IHCP must be solved for each iteration. 

With this approach, it is possible to relinquish the gradient methods that require solution of adjoint equations for 

calculation of the functional gradient and to simplify substantially the algorithm of the solution. In the finite- 

dimensional formulation, in the current iteration, Eq. (2.17) can be written in the form of the system of linear 

algebraic equations 

A~ - 2 = 0 ,  (2.18) 

where ~ = ~ ,  ~]T, z i x k  = Rk(Vi)  _ AI  (~ l ) ( xk ,  ~:i), i = I,  m ,  k = 1, N ,  ~ is the vector of the sought coefficients, and 

~l is the current approximation of ft. The solution of (2.18) is written in the form of (1.9). 

It can be shown that the optimum value of the parameter p that specifies the linear model that approximates 

the initial nonlinear one in the best way in the sense of the minimum of HA~@)(xk, ri) 11 R c a n  be calculated 

from the formula 

* r -- T (2.19) 
p = (A 2 (P) Y ( ' P ) ) / ( ~  ( -~ y (-P)) , 

where y = (AI(P) + A2(- f i ) ) /p ;  p is the value of the parameter that is used in calculation of Al(p) according to 

(2.15)-(2.16), and A2(~) = R ( x k ,  vi) ,  where R is the solution of the problem 

_1+1 
Rr  - R x x  = /(~ , (2.20) 

R(0,  X) = 0 ,  R( r ,  0) = 0 ,  R x ( r ,  1) = 0 .  

Determination of p* is, in essence, an iteration process, since as the value of the parameterp changes, the estimation 

interval changes in real time, which requires reformation of the observation sample used in solving inverse problem 

(2.14). However, practical calculations show that in most cases the first approximation obtained from results of 

solving the problem in the previous interval is sufficient, especially if the step ds (see Fig. 1) is not too large. Since 

in this case, A1 (p) is already known, it is only necessary to calculate additionally the vector A2(p) according to 

(2.20). 
We consider the choice of the regularization parameter in solving linear IHCP (2.14) in the current 

iteration. With account for (1.9), the vector ~ is estimated from the formula 

-fi = B - z =  B ( R -- Z 1 ( i l l ) )  = B (Z-fi + Z '  1 (O) (fi -- ~ l )  + ~) . 

With account for the last relation, the estimation error is specified by the expression 

A 

-g (a )  =-fi  - p = ( I -  BA)- f i  + B~ + B A '  l (0) (-'fi -- -fil) , 
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and the accuracy of the regularized solution, by the trace of the quadratic form A 2 = sp(M [T(ct)~'T(a)]). The  

iteration process converges when IIB(a)A] (0) II 2 - ko < 1. 
Satisfiability of the last relat ion can be proved strictly only in the case of weak nonl inear i ty  and  with some 

limitations on the spectrum of the input signal; however, in most practical situations it is satisfied with a correct  

choice of p. In this case it can be demonst ra ted  that 

2 = , @ ( 1  - lim A N 
i - ~ o o  

where AZL is the accuracy of the solution of l inear inverse problem (1.1). 

Let ~(a) = (I - A B ( a ) ) f *  -- E(a)7* be the residual of problem (2.18), Ve be the covariance matr ix  of the 

residual,  ~ -- ~ - ~t be the er ror  of the current  approximation,  and Ve t be its covariance matrix.  It can be shown 

that the solution that is opt imum in the sense of the minimum of A 2 occurs in the case 

VZ,(B(a*)) = (V* + V¢) E T , (2.21) 

where V* = A'I(O)V-il(A'l(O)) r and  V~ is the t ransformed covariance matr ix  of the measuremen t  error .  The  last 

expression means that the residual of problem (2.18) should be consistent  with both the measu remen t  e r ro r  and  

the nonl inear  contribution of the init ial-approximation error.  Therefore ,  for  example,  use of the heurist ic  rule 

= l (0 v¢  rr, (2.22) 

gives good results. Here  f(/) is a decreasing function of the i terat ion number  l, equal to unity for number s  larger  

than the specified value. The  last expression is considered to be a statistical hypothesis  that  can be checked using 

a statistic of the type of (1.12) and confidence interval (1.14). 

We consider  the expression for the residual of the nonl inear  problem 

- I  - - *  l e = R  - A p  - A  1 ( ~ l )  = A - g l + A I  (O)_gl+~.  

In the case of the exact solution, e - ' /=  0, and consequently,  ~l = ~. Here  the covariance matr ix  of the residual  is 

equal to 

v j  = (2.23) 

To check the statistical hypothesis  W1 about validity of equality (2.23), we use the statistic 

(-dl)T ( v ~ ) - I - t  (2.24) 
rw[ : e 

If statistic (2.24) belongs to confidence interval (1.14), the hypothesis  W1 is correct  and in this case i terat ion 

process (2.17) can be stopped. 

Above we considered the inverse problem written in dimensionless form using the Four ie r  subst i tut ion.  Let 

tc be the current  time. In dimensionless time the estimation interval is equal to dr. Consequent ly ,  the real t ime 
N 

interval and the step between measurements  should be "dr = p*dt/b2 and 8 t = d t /m.  Measurements  with a f ixed t ime 

step are used most often in practice. This step is not identical to St, since the lat ter  changes depend ing  on the 

chosen p*; however, a sequence of measurements  with the step/Yt can be formed using interpolat ion.  To  do this, at 

the current  time it is necessary tO store measurements  made in a previous time interval that  is not shor te r  than 

fi~t in = dr(Cob2), and the interval between measurements  should not exceed ~'~nt ax = dt / (CibZm.)  
A series of computational experiments  was carried out to investigate the suggested a lgor i thm for solving 

the IHCP. Results of the solving the direct heat-conduct ion problem for some functional form of the  boundary  

condition were used as exact initial data for solving the IHCP.  The  measurement  e r ror  was s imulated as white 

noise with a variance specified in percent  of the maximum observed temperature  D = ( l / 3 ~ ' m a x ( . f ~ ( r ) ) )  2. T h e  
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Fig. 5. Results of recovery of the heat flux: a) test example (solid line) and 

point estimates; b) optimum values of the parameter p* and number of 

iterations; N -- 1, x[ = 1.0, dt = 0.32, d e - 0.16, m = 64. 

solution of the inverse problem was formed in the entire time interval as a simple sequence of point estimates. It 

was assumed that one temperature sensor located on the thermally isolated surface x = b was used. The following 

parameters were used in the solution: d t=  0.32; de -- 0.18; m -- 64; ~'-- 5%, C - 1, and ~I(T) -- 1 + 3T. In Fig. 5a 

one can see results of recovery of the heat flux, and Fig. 5b is a plot of the optimum value of the parameter p* 

versus time. It also shows the number of iterations performed in each time interval. It can be seen that solution of 

the problem requires on average about two iterations. This confirms the rather rapid convergence of the method of 

successive approximations. Meanwhile, implementation of this method is much simpler and cost-saving in 

comparison with the gradient methods. 

N O T A T I O N  

A, linear operator; Al, operator of the nonlinear contribution; b, thickness of the plate; B(a), regularized 

inverse operator; C (79, specific heat; C(R) ~ (Co, CI), reduced thermal diffusivity; dr, magnitude of the estimation 

interval; de, delay of the estimate relative to current time; ds, shift of the estimation interval; ~(a), residual vector; 

E(a) ,  residual operator; ~(~), observed temperature values; Flnxn], stabilization matrix; g*(O, g'*0:), known 

boundary condition; ~, ~'l, intermediate result in calculation of the sought vector; Hi (a~), H2(aD , transfer functions; 

i, index of the time node; k, number of the sensor; ko, index of the convergence rate in the successive 

approximations; K1 (a), K2(a) , amplification factors; l, number of the iteration in the successive approximations; 

/0, number of the iterations in choosing the regularization parameter; m, number of readings in the estimation 

interval; N, number of sensors; P[nl, vector of unknown coefficients; P[nl, estimate of the vector ~; rw(a) , rwl (a), 

statistics; R, potential; R~(r), observed values of the potential; st, singular numbers; S, diagonal matrix of singular 
numbers; Sa, diagonal matrix that is inverse to the matrix S with account of a ~ 0; t, time in the moving coordinate 

system; tc, current time; t e, time delay relative to tc by de; T, temperature; Uo(x), U0(x), initial condition for the 

temperature and potential; Ui(r) ,  b'l(z), sought boundary condition for the temperature and potential; Ve, 
covariance matrix of the residual; V~, V~, covariance matrices of the noise of the measured temperature and 

potential; x, coordinate; Xk, coordinates of the location of the temperature sensors; ~lmNl, observation vector; ~k(O, 

~k(O, noise of the measured temperature and potential; a,  regularization parameter; r ,  parameter of linear 

transformation of the temperature; ~[nll, vector of approximation coefficients of the initial condition; 7, level of 
the first-order error; Y[n2], vector of approximation coefficients of the boundary condition; AL, AN, accuracy of the 

solution of the linear and nonlinear inverse problems, respectively; E(a), estimation error of the coefficient vector; 

e(a), F(a), absolute and relative estimation errors of the boundary condition at time re; ~oj(x), basis function; 2(79, 

thermal conductivity; cr 2, variance of the noise of the measurements; ~, relative measurement error, ~ ; p, parameter 

specifying the approximating linear model; w, relative frequency; w 0, frequency of the readings; r, time in the 
moving coordinate system; Ee, guaranteed-estimation interval; Eo, confidence interval of variation of the 

regularization parameter; ~Vj(r), basis function; A -1, A T, inverse and transposed matrices; Plnl, vector fi of 

dimension n; Tx, Txx, first and second derivatives with respect to x; I1" IIR Euclidean norm of a vector of 
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dimension m; I1" I1 , norm of a function in the Sobolev space W~; (*,.)w~2, scalar product in the Sobolevs space 
I1" 112, n o r m  of a matrix, equal to the maximum singular number. 
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